Solution to Exercise

Substitution reaction in semi-batch reactor (RC1)

Cooling capacity of plant reactor

The cooling capacity can be calculated from the plant reactor data:

$$q_{ex} = UA(T_r - T_c) = 200 Wm^{-2}K^{-1} \times 5 m^2 \times (80 - 5) = 75 kW$$
$$q'_{ex} = \frac{75000 W}{2000 kg} = 37.5 W / kg$$

Since the measured maximum heat release rate is 31 W/kg, the available cooling capacity is sufficient, but practically without safety margin.

MTSR

The maximum accumulation is reached at the stoichiometric point and is: $X_{acmax} = 0.25$.

At the stoichiometric point, the reaction mass is: $M_{r,st} = 1.4 \ kg$.

MTSR is therefore :
$$MTSR = T_P + X_{ac} \cdot \Delta T_{ad} \cdot \frac{M_{rf}}{M_{r(t)}} = 80 + 0.25 \times 176 \times \frac{1.5}{1.4} = 128 \, ^{\circ}C$$

Criticality

The characteristic temperatures are:

 $T_p=80$ °C < $T_{D24}=115$ °C < MTSR= 128 °C < MTT=140°C

The results are represented graphically in Figure 1.

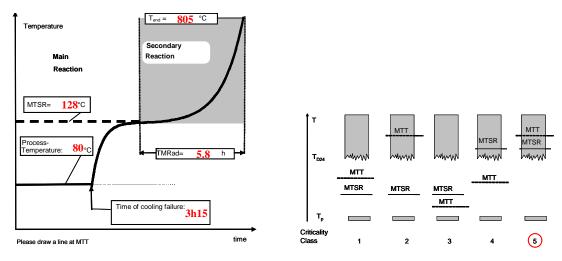


Figure 1: Cooling Failure scenario and criticality class.